18. Undecidability
Mar 3/8, 2022
Turing-acceptable and undecidable
Undecidable languages has no decider: any TM that accepts
We will show that there exists is a language
is Turing-acceptable is not Turing-acceptable- (the complement of a decidable language is decidable)
- therefore
is undecidable
╭————————————————————————————————————————╮ │ Non-Turing-acceptable ----------- ¬L │ ╭———————————————————————————————╮ │ │ │ Turing-acceptable ------------ L │ │ ╭—————————————————————————╮ │ │ │ │ │ Decidable │ │ │ │ │ ╰—————————————————————————╯ │ │ │ ╰———————————————————————————————╯ │ ╰————————————————————————————————————————╯
Consider alphabet
Consider TMs that accept languages over alphabet
They are countable
Each machine accepts some language over
Example language accepted by
Consider the language
| a1 a2 a3 a4 ... ------------------------- L(M1) | 0 1 0 1 ... L(M2) | 1 0 0 1 ... L(M3) | 0 1 1 1 ... L(M4) | 0 0 0 1 ... ... | ...
Proof. There exists is a language
Theorem: language
Proof: Assume for contradiction that
The machine
Next will prove that language
- Turing-acceptable - there is a TM that accepts
, and - undecidable - each machine that accepts
does not halt on some input
Theorem:
Proof: give a TM that accepts L. For any input string
Therefore,
Theorem:
Proof: if