Skip to content

14. Chomsky Hierarchy

Feb 22, 2022

Linear-Bounded Automata

  • the input string tape space is the only allowed tape space allowed
  • cannot go left/right beyond input
  • all computation is done between end markers

=> this restriction limits the number of problems that can be solved

  • LBAs have more power than PDAs
  • LBAs have less power than TMs

Example languages accepted by LBAs

L={anbncn}     L={an!}

(Presumably) open problem:

do nondeterministic LBAs have same power as deterministic LBAs?

Variations of Grammars

Unrestricted Grammars

Production rules are sensitive to the context of the variables, e.g. uv on both left and right: string of variables and terminals.

Unrestricted Grammars have same power as Turing Machines.

Examples:

SaBc     aBcA     Acd

Theorem. A language L os Turing-acceptable iff L is generated by an unrestricted grammar.

Context-sensitive Grammars

Subcase of unrestricted grammars — restricted form where |u||v|.

Example: the language {anbncn} is context-sensitive:

Sabc|aAbc
AbbA
AcBbcc
bBBb
Abaa|aaA

Note: the length of left side is upper bounded by length of right side.

Theorem. A language L is context-sensitive iff it is accepted by a linear-bounded automaton.

Observation: There is a language which is decidable but not context-sensitive.

Chomsky Hierarchy

       ╭————————————————————————————————————————╮
       │  Unrestricted/recursively enumerable     │
       │   ╭———————————————————————————————╮      │
       │   │      Context—sensitive         │    │
       │   │  ╭—————————————————————————╮  │    │
       │   │  │      Context—free       │  │    │
       │   │  │  ╭———————————————————╮    │  │    │
       │   │  │  │     Regular       │    │  │    │
       │   │  │  ╰———————————————————╯    │  │    │
       │   │  ╰—————————————————————————╯  │    │
       │   ╰———————————————————————————————╯    │
       ╰————————————————————————————————————————╯